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Figure 1: Body postures 1-20 in the APS Posture Set

ABSTRACT

Human body postures are an important input modality for
motion guidance and other application domains in HCJ, e.g.
games, character animations, and interaction with public dis-
plays. However, for training and guidance of body postures
prior research had to define their own whole body gesture
sets. Hence, the interaction designs and evaluation results
are difficult to compare, due to a lack of a standardized pos-
ture set. In this work, we contribute APS (APS Posture Set),
a novel posture set including 40 body postures. It is based on
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prior research, sports, and body language. For each identi-
fied posture, we collected 3D posture data using a Microsoft
Kinect. We make the skeleton data, 3D mesh objects and
SMPL data available for future research. Taken together, APS
can be used to facilitate design of interfaces that use body
gestures and as a reference set for future user studies and
system evaluations.
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Figure 2: Body postures 21-40 in the APS Posture Set.

1 INTRODUCTION

With the emergence of posture-sensing technologies human
body postures have the potential to replace and augment
existing input modalities, such as touch and speech. This
paradigm shift is enabled by advances in sensing technolo-
gies, which make tracking of user’s body motion easier and
cheaper. For instance, body postures can be sensed using a se-
quence of RGB images [4], depth images [20] (e.g., Microsoft
Kinect), and IMU data [13, 26].

In Human-computer Interaction (HCI) literature, a com-
mon use-case for body-based interaction is motion guidance:
for full-body motion training [2, 12, 25]; learning physical ac-
tivities, such as dancing [6], martial arts [7] and sports [22];
gesture guidance [21] and learning [8]; interaction with pub-
lic displays [1, 27]; spatial guidance [10, 11]; and physio-
therapy [23]. With the multitude of proposed systems and
methods, varying across body parts, modalities used, tech-
nical setups and evaluation metrics, drawing conclusions
between the various approaches becomes difficult. For in-
stance, while YouMove introduced by Anderson et al. [2] and
Physio@Home introduced by Tang et al. [23] both employ
augmented reality for guiding motion, they use different vi-
sualizations for augmented feedback, capture the user from
different views and train/guide different body parts (full-
body movements in YouMove and shoulder movements in
Physio@Home). Although motion and posture guidance sys-
tems in HCI have often been used in sports and physical
activities, the interaction techniques are directly applicable
in assistive environments, e.g for training workers manu-
facturing tasks [5].Drawing conclusions between different
approaches and interaction techniques is currently not pos-
sible due to the different postures used.

In this work, we introduce APS (APS Posture Set), a 3D
human body posture dataset. APS is intended as a baseline
for posture training and system evaluations. The benefits of
a predefined standard benchmark for evaluation have been
established in the HCI community. For instance, MacKen-
zie and Soukoreff [17] introduce a standard phrase set for

evaluating text entry techniques. Funk et al. [9] introduce a
standardized task to support interactive augmented reality
tasks for assembly instructions. Thus, we introduce a com-
pact set of postures to enable development and evaluation
of approaches for posture guidance and training.

2 METHODOLOGY

While constructing our baseline posture set, we referred
to prior work utilizing full-body and mid-air gestures for
interaction. Karam and Schraefel [14] introduced a taxon-
omy of gesture styles identifying five different classes of
gestures, namely: gesticulation, manipulations, semaphores,
deictic and language gestures. We analyze static semaphoric
gestures as these are person-centric gestures independent
of spatial and object-specific information. As the mapping
between this type of gesture and meaning is often unre-
lated and needs to be learned, we extracted postures from
interactions with public displays, aircraft marshalling, the
semaphore flag signaling systems and warm-up exercises. In
cases where several postures were visually indistinguishable
from each other, only one posture was kept, e.g posture 4
in APS corresponds to postures for the letter ‘D’ or number
’4’ in the semaphore flag signalling system and the Wing-
walker/guide signal in aircraft marshalling [3]. Similarly, for
postures that were the result of a reflection across the sagit-
tal plane, only one posture was kept, e.g the letters "W’ and
'O’ in the semaphore flag signalling system. Figures 1 and 2
depict the single postures in APS.

For visualizing postures we use Posebits [18]. Posebits are
conditions defined on geometric relationships between body
parts. These conditions can be easily defined or generated,
e.g given a posture an example posebit is "is the right hand
above shoulder level?". Structuring a set of postures based on
posebits results in a binary tree, with each node containing
the set of postures constrained by the conditions of nodes
higher in the tree. Similar to decision trees, the posebit to use
for splitting at a certain node is chosen to maximize infor-
mation gain. Figure 3 shows the postures in APS structured
according to the posebit "is a hand above shoulder level?".
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Figure 3: Overlapping postures showing (a) all postures with
at least one hand above shoulder level and (b) all postures
with no hands above shoulder level in the APS dataset

Using posebits supports straightforward generation of mean-
ingful structure from a set of postures. Additionally, due to
its coarse- to fine-grained nature, extracting prototypical
postures becomes uncomplicated.

3 APS DATA COLLECTION

APS consists of skeleton data, 3D mesh objects of the postures
and the parameters required to generate 3D body models in
all postures. The 40 postures were performed by a single user.
The 3D body models are approximated from the skeleton
data recorded using a Microsoft Kinect Version 2, and can
be used when using a different motion tracking setup than
the Microsoft Kinect.

The Kinect provides skeleton tracking of 25 joints in 3D
updated at 30 Hz. The Kinect skeleton includes sufficient
joints of major body parts—such as the wrists, elbows and
knees—to represent all postures in APS. We manually pick
a frame where the posture is correctly performed and the
joints are detected, from which the 3D skeleton data are
read and saved as JSON. The bones are structured as a tree
according to the hierarchy of the Kinect skeleton.

In addition to the Kinect data, we represent postures as
statistical 3D body models in the SMPL format [16]. SMPL
decomposes the 3D body representation into shape and pose
parameters. The person-specific shape parameters are a set of
coefficients representing the person’s body shape according
to the principal components responsible for the greatest
variance in shape learned by the model. The pose parameters
are the relative orientations of the joints across the kinematic
chain.

In comparison with the Kinect skeleton data, SMPL sup-
port: (1) interfaces that depend on the user’s body shape,
e.g by projecting information on body parts, (2) consistent
placement of wearable devices across users and (3) realis-
tic visualizations in augmented- and virtual environments.
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The SMPL model uses a skeleton with 23 joints, where the
exact joint locations depend on the body shape. The joint
information delivered by the Kinect is used to fit a SMPL
model by minimizing joint position error and taking into
consideration posture constraints (as in Varol et al. [24]). To
this end, the joints used are the wrists, elbows, shoulders,
hips, knees, and ankles which are present in both the kinect
and SMPL skeleton rigs.

4 THE APS POSTURE SET

We introduce the APS posture set consisting of 40 distinct
postures as baseline postures for evaluating posture recogni-
tion, posture training, and motion guidance. Our 40 postures
are depicted in Figure 1 and Figure 2.

Our posture set comes with three different attributes per
posture: (1) posture name (2) posture reference image (3)
posture reference skeleton data in the SMPL format (as de-
scribed in section 3).

(1) The posture name is there to distinguish the postures
from each other and naming them in instructions.

(2) As depicted, we rendered our reference postures using
a pink avatar. These pictures of reference postures can be
used as visual baseline descriptions of the postures.

(3) The posture skeleton data can be used by researchers
to computationally compare an actual posture to a baseline
posture and calculate a difference from two positions. This
can be used for example when calculating visual, auditory,
or tactile instructions for giving feedback according to a
posture.

We want to solve the problem of current systems, which
are not comparable due to differences in user study setups,
when teaching users how to learn postures and therefore
we make the APS posture set available for download for the
research community!. We intend that by offering a compact
set of standard postures, the scientific community can benefit
from increased comparability of existing and future posture
and motion guidance systems.

5 APPLICABILITY

We envision our APS posture set to be useful in a variety
of domains, such as industrial assistance systems, general
evaluation of posture guidance systems or for interaction
using full-body gestures.

Industrial Assistance Systems

Industrial assistance systems are increasingly incorporating
sensing technology in the workplace, offering many possibil-
ities for natural body-based input. Posture guidance systems,
typically using wearable displays for output, can be used for
training in assistive environments [5]. The postures in APS

!Download the APS posture set here: http://makufunk.de/download/APS.zip
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are not directed towards a particular scenario in the industry,
but are rather generic covering a variety of possible postures
assumable by the human body. For more specific scenarios,
such as teaching particular assembly tasks or ensuring proper
posture while loading/unloading packages from transport
vehicles, APS can be used as a valuable baseline for evalu-
ating interaction techniques before developing approaches
that target such scenarios specifically.

Evaluation of Posture Guidance

One of the primary usages of APS is the comparison of dif-
ferent posture guidance applications and their parameters.
To this end, we suggest using posture completion time to
evaluate various guidance techniques. The time to complete
a posture is measured from the start of the guidance, i.e. as
soon as the user receives information on the posture to be
performed, until the correct posture is performed. In cases
where the user is unable to perform a particular posture,
an error measure such as the 3D joint position error of the
aligned skeletons could be appropriate. To be able to asso-
ciate completion times of postures across user studies, the
user starts each trial standing upright with arms relaxed to
the side.

Full-body Interaction

Postures in APS are mostly based on the semaphore flag and
aircraft marshalling signalling systems, which were designed
for communication over distance. The postures are there-
fore clearly visually distinguishable from each other and are
suitable as full-body gestures for interaction, e.g with public
displays or smart devices.

6 DISCUSSION & FUTURE WORK

Human body interactions are rich in information and ges-
tures. Body posture capture only a small—but important—
part of this information. Our proposed dataset does not in-
clude face and hand gestures. Prior work has shown that
capturing such aspects is possible with existing technologies.
For example using articulated hand models [19] or face mod-
els [15]. However, we excluded these gestures, since they
seem to be orthogonal to our proposed whole-body postures.
They can be added in the future to further increase the ex-
pressiveness of our dataset and to enable novel interaction
techniques.

The focus of APS is on static postures. These can be seen
as keyframes of body movements (e.g., the holding postures of
a yoga workout). However, some applications might require
more detail about the movement, e.g speed and expression.
We omitted such details in this dataset, since they would
drastically increase its complexity. We hope to extend APS
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by augmenting it with existing movement notations (e.g. La-
bannotation) in the future to describe the transition between
two postures.

7 CONCLUSION

In this work, we presented APS, a novel 3D human posture
set. It is designed to be used in user studies and system evalu-
ations of posture guidance applications. We clustered 40 pos-
tures in APS according to posebits [18] to extract meaningful
structures resembling their appearance. We contributed the
Kinect skeleton data, 3D meshes, and SMPL models of all
APS postures to enable researchers working on the same
posture data (see supplementary material). We discuss the
usage of this data along with common measurement met-
rices used in HCI. We are confident that such a dataset is
an important step to increase the comparability of different
motion guidance systems and their training techniques.
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